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Summary Mapping regional brain development in terms of protein synthesis (PS)
activity yields insight on specific spatio-temporal ontogenetic patterns. The biosyn-
thetic activity of an individual brain nucleus is represented as a time-series object,
and clustering of time-series contributes to the problem of inducing indicative pat-
terns of brain developmental events and forming respective PS chronological maps.
Clustering analysis of PS chronological maps, in comparison with epigenetic influences
of �2 adrenoceptors treatment, reveals relationships between distantly located brain
structures. Clustering is performed with a novel graph theoretic clustering approach
(GTC). The approach is based on the weighted graph arrangement of the input ob-
jects and the iterative partitioning of the corresponding minimum spanning tree. The
final result is a hierarchical clustering-tree organization of the input objects. Appli-
cation of GTC on the PS patterns in developing brain revealed five main clusters that
correspond to respective brain development indicative profiles. The induced profiles
confirm experimental findings, and provide evidence for further experimental studies.
© 2004 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The complex architecture of the brain creates
unique problems for its proper assembly. In ver-
tebrate brains, neurons with similar long-distance
connections are aggregated into cerebral nuclei
(anatomic modules) and the process of their dif-
ferentiation involves specification of cell fate,
migration of cells, outgrowth of axons, as well as
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formation and modification of neural circuitry.
These developmental events are based on intrinsic
genetic programs and epigenetic factors controlling
the spatio-temporal pattern of gene expression, to
produce proteins–—the fundamental components of
structural and functional elements in brain tissue.
Protein synthesis (PS) indeed underlies long-term
events in the developing brain that involve changes
in morphology and remodeling [1] and reflects
these major morphogenetic processes during on-
togeny. Ageing is accompanied by reduced protein
synthesis rates [2,3] attributed to age related de-
cline in the rate of elongation of the polypeptide
chain. Moreover, protein synthesis is extremely
valuable cell function marker, e.g., its stimulation
parallels learning paradigm in chick [4], while de-
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generation and apoptotic events [5] are associated
with its suppression.

Avian embryo being an excellent model for de-
velopmental studies [6] was used to address the
issue of brain developmental plasticity and the
epigenetic influence of transmission of signals be-
tween differentiating cells. Specifically, the effect
of the manipulation of a neurotransmitter system
was studied, by application of an alpha 2 (�2)
adrenergic agonist, clonidine. The noradrenergic
system, known for its role in learning and memory
[7] and its early appearance in developing central
nervous system (CNS) [8,9], suggests its significant
role in neural plasticity mechanisms.

During the course of development the establish-
ment and refinement of proper connections among
neurons concerns a problem of pattern formation.
Therefore, brain developmental processes could
be approached by a series of sequential events as
captured by the chronological PS patterns of the
brain nuclei and represented as a collection of
time-series.

Expanding interest in data mining and knowledge
discovery has contributed to an increase of research
awareness in mining time-series data. Mining tasks
referring to linear precedence phenomena, i.e.,
ordering of elements (events) in a sequence as a
relation over the time axis, include prediction,
characterization, and clustering [10]. In this paper
we introduce a novel graph theoretic clustering
(GTC) approach and apply it on experimental brain
developmental time-series data. The approach
is based on the arrangement of the objects in a
weighted graph, the construction of the graph’s
minimum spanning tree (MST), and an algorithm
that iteratively partitions the tree. The final result
is a hierarchical clustering-tree organization of the
input objects.

A special feature of GTC is the combination of
different information sources in order to compute
the distance between the input objects. Domain
background knowledge could be utilized in order to
compute the distance between objects and arrange
them in the weighted graph. Then, iterative parti-
tioning of the respective MST is done with reference
to the original feature-based description of data.
This hybrid characteristic makes the whole data
analysis process more ‘knowledgeable’ in the sense
that established domain knowledge guides the clus-
tering process.

In the present study, we focus on the discovery
of indicative and descriptive patterns in order to
‘uncover’ hidden relations and yield insight on the
order of chronological and topographical maps of
avian brain, providing profiling rules that possibly
guide its development. The results and their biolog-

ical interpretation contribute to the identification
of hierarchical rules underlying the origin of brain
structures and provide possible homologies with the
mammalian brain. The induced profiles confirm ex-
perimental findings, parallel them with established
neurobiological knowledge, and provide evidence
for further experimental studies.

2. Background

2.1. Brain development data

The experimental data for the present study con-
cern 30 experimental animals–—chick embryos
and hatchlings, at different developmental stages
(ages). These stages were selected based on
data from our previous studies [8]. A total of 57
brain-nuclei were identified and targeted, in agree-
ment to their histological and neurochemical char-
acteristics previously defined [11]. Local cerebral
PS activity was measured (refer also to Section 4.1)
over six age/time-stamps: E11, E13, E15, E17, E19
(5 embryonic days), and P1 (1 post-hatching day).
In Table 1, classification and background knowledge
concerning the nomenclature, major anatomy,
topography, and density of �2 adrenergic recep-
tors as well as known function of the 57 targeted
brain-nuclei is summarized.

For each brain nucleus the PS respective age’s
means over all chicks were recorded. The final out-
come is a set of 57 time-series in a time-span of
the six age/time-points. We refer to this dataset
as CTRL. The respective data acquired by clonidine
treatment are referred as CLON (refer to Section 4.1
for details on the followed biomedical methods,
treatments and protocols).

2.2. Indicative brain developmental
profiles: a graph theoretic clustering
approach

Mapping of regional cerebral protein synthesis ac-
tivity in developing animals forms the basis to
determine developmentally evolved changes in
adult brain. Towards this goal, and representing
each brain-nucleus PS chronological pattern as a
time-series object, we introduce and apply a novel
graph theoretic clustering approach on the col-
lection of these time-series objects. The careful
biological interpretation of the resulted clusters
would provide the basis for the discovery of indica-
tive cerebral developmental maps of PS activity,
the extraction of rules and relationships that may
govern normal ontogenetic processes, and corre-
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Table 1 Brain nuclei nomenclature and classification

Brain nuclei Abbreviation Class-Type

MAD A2ST BS CAT

1. Archistriatum dorsale Ad pallium low somatosensory lateral
2. Area corticoidea lateralis CDL pallium medium multimodal dorsal
3. Area parahippocampalis APH pallium low limbic dorsal
4. Cerebellar White WH cerebellum low white-matter dorsal
5. Cerebellum Granule cell Layer GR cerebellum low motor dorsal
6. Commissura anterior CA NA* low white-matter ventral
7. Commissura posterior CP NA low white-matter dorsal
8. Cortex piriformis Cpi pallium medium visual lateral
9. Ectostriatum E pallium low visual lateral
10. External Granule layer EXTGR cerebellum medium motor dorsal
11. Fasciculus prosencephali lateralis, a FPLa NA low white-matter ventral
12. Fasciculus prosencephali lateralis, p FPLp NA low white-matter ventral
13. Hippocampus Hip pallium low limbic medial
14. Hyperstriatum ventrale HV pallium high multimodal dorsal
15. Lobus paroflactorius LPO subpallium medium motor medial
16. Locus ceruleus Loc pons high limbic dorsal
17. N. accumbens Ac subpallium high limbic medial
18. N. basalis Bas pallium high somatosensory ventral
19. N. D. Branchium Conjactivum nDBC pons medium motor medial
20. N. dorsolateralis DL thalamus low somatosensory lateral
21. N. geniculatus lateralis, ventralis GLv thalamus medium visual ventral
22. N. intercollicularis ICo tectum high auditory/vocal dorsal
23. N. isthmi pars magnocellularis Imc tegmentum low auditory/vocal lateral
24. N. isthmo-opticus IO pons low visual dorsal
25. N. lemnisci lateralis. intermedia LLi pons low somatosensory lateral
26. N. linearis caudalis LC pons medium somatosensory medial
27. N. mammilaris medialis MM hypothalamus high limbic medial
28. N. mesencephalic lateralis, dorsalis Mld tectum low auditory/vocal dorsal
29. N. nervi oculomotorii OcM pons low motor dorsal
30. N. ovoidalis Ov thalamus low auditory/vocal medial
31. N. pontis lateralis PL pons medium motor ventral
32. N. pontis medialis PM pons medium motor ventral
33. N. preopticus medialis POM hypothalamus high limbic ventral
34. N. reticularis pontis RPO pons low somatosensory ventral
35. N. tegm.pend-ponti., compacta TPc tegmentum medium motor ventral
36. N. Vestibularis, medialis VeM pons medium motor dorsal
37. N.anterior medialis hypothalami AM hypothalamus high limbic medial
38. N.dorsomedialis DM thalamus high limbic medial
39. Neostriatum N pallium low multimodal lateral
40. Neostriatum intermedium NI pallium low multimodal medial
41. Nucleus opticus basalis nBOR tegmentum medium visual ventral
42. Nucleus pretectalis PT thalamus high visual dorsal
43. Nucleus rotundus Rt thalamus low visual lateral
44. Nucleus semilunaris Slu tegmentum low somatosensory lateral
45. Nucleus septalis lateralis SL subpallium high limbic medial
46. Nucleus septalis medialis SM subpallium high limbic medial
47. Nucleus spiriformis lateralis SPI tegmentum medium visual lateral
48. Nucleus subpretectalis SP tegmentum medium somatosensory ventral
49. Nucleus taeniae Tn pallium low limbic ventral
50. Paleostiatum augmentatum PA subpallium low motor lateral
51. Paleostriatum primitivum PP subpallium high motor ventral
52. Str. griseum et fibrosum super, sup SGFSs tectum high visual lateral
53. Str.griseum fibrosum. super deep SGFSd tectum medium visual lateral
54. Stratum album centrale SAC tectum low white-matter lateral
55. Stratum griseum centrale SGC tectum medium visual lateral
56. Substantia grisea centralis GCt tectum high auditory/vocal medial
57. Tractus Opticus Tov NA low white-matter ventral

The targeted class-types (utilized in the present study) and their values are shown; MAD–—‘major anatomic
divisions’; A2ST–—‘A2 synaptic transmission’; BS–—‘brain system’; and CAT–—‘cerebral axes topography’.
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late critical periods with specific structures during
development.

The GTC clustering approach is based on the
arrangement of the objects in a weighted graph,
the construction of the graph’s minimum span-
ning tree, and an algorithm that iteratively par-
titions the tree. The final result is a hierarchical
clustering-tree organization of the input objects.
With GTC there is no need to specify the number of
clusters in advance (a prerequisite of other cluster-
ing approaches such as k-means [12]). In contrast,
a ‘termination’ condition, implemented with an
information-theoretic formula, is applied on each
of the nodes of the growing clustering-tree and de-
cides to stop or, to further expand the tree at that
node.

2.3. Related work

MST-based clustering is not a new idea. It was
first introduced by Zahn [13] and Page [14]. Re-
cently, a similar approach that follows a dif-
ferent partitioning strategy was also introduced
and applied on gene-expression profiling tasks
[15]; the method is implemented in the core of
the EXCAVATOR gene-expression analysis system
(http://www.apocom.com/geneexpression.html).

These approaches follow a ‘one-shot’ MST parti-
tion strategy with the identification of ‘weak’ (or
‘long’) MST edges, which are then cut. Because of
their one-shot partitioning strategy these methods
could not identify special relations in the data as
for example the potential of a hierarchical organi-
zation. In addition, all approaches demand the pre-
setting of the number of desired clusters. In most
cases such a demand is problematic, especially in
exploratory data analysis where, the analyst pos-
sesses no hints about the potential number of clus-
ters. For the approach in [15] an estimate for the
optimal number of clusters is computed in advance,
a pre-processing step of high computational cost.

Moreover, GTC exploits a ‘hybrid’ characteristic.
Assuming that the assignment of objects to classes
is known in advance then, the VDM metric (re-
fer to Section 4.2.2) is used to utilize information
that comes from external (to the feature-based
description of the objects) modality. The cluster-
ing is to be performed on a (potentially) different
distance-based arrangement of the object, and the
final hierarchical clustering outcome reflects both:
(a) the feature-based description of the objects
(in our case the brain developmental PS profiles),
and (b) their class assignments. So, conjectures
made from one source of information may be used
to confirm (or, reject) conjectures from the other,
and vice versa. In this setting, pre-established

domain-knowledge is utilized in order to discover
regularities and confirm/reject hypotheses. In that
sense, GTC presents a ‘knowledgeable’ exploratory
data analysis approach. This is in contrast to other
MST-based clustering approaches where, the com-
putation of distances between objects relies solely
on the feature-based description of the objects
and the corresponding ‘geometric’ arrangement of
them. In this mode, clustering is not coupled with
background domain knowledge, a crucial source of
information in order to decide where to cut the
MST (especially for ‘borderline’ cases).

3. Design considerations

Our aim is to discover indicative and characteristic
patterns in the developing brain. In this context, we
rely on the history of in vivo PS activity of specific
brain areas. Profiling the respective developmental
patterns may yield insight on their maturation pat-
terns, and reveal relationships between distantly
located structures.

Towards this goal we follow a clustering method-
ology in order to induce groups of brain-nuclei that
exhibit similar PS chronological profiles. With the
careful inspection of the induced clusters, and their
relationship, researchers in the field (i.e., neuro-
scientists) may uncover and reveal reliable brain
developmental models that not only confirm estab-
lished neurobiological knowledge but also, provide
hints for further experimental studies.

Clustering aims to group together objects with
similar properties. This can also be viewed as the
reduction of the dimensionality of the system or,
the discovery of ‘structure in the data’. Here,
we present a novel graph theoretic clustering ap-
proach, as adjusted for time-series data analysis
that follows two basic steps.

Step 1: Assume a feature-value description of the
input objects. In the case of the brain de-
velopment domain the features are the
protein-synthesis stamped time-points.
Following a dynamic discretization pro-
cedure the continuous value of each
time-point is assigned to a discrete nom-
inal value. The distances between all the
discretised time-series are computed. The
distances may be computed taking in con-
sideration various modalities. For the brain
development data the distance may re-
flect different class-type assigned to the
brain nuclei, just like the ones shown in
Table 1 (refer also to Section 2.1 for de-
tails). Currently, GTC employs class assign-

http://www.apocom.com/geneexpression.html
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ment information in the computation of
the time-series distances and realizes this
information by the utilization of a special
distance measure, the VDM metric (refer
to Section 4.2.2).

Step 2: A fully connected weighted graph is de-
vised with the objects as nodes, and
edge-weights the computed distances. The
minimum spanning tree of the graph is
computed and formed. The MST reserves
the minimum distance between the ob-
jects in a way that low-distant objects are
arranged in neighboring areas of the tree.
Then, the MST is cut to sub-trees follow-
ing an iterative partitioning algorithm that
concludes to the hierarchical clustering of
the input objects.

4. Biomedical and computational
methods

4.1. Biomedical methods and data
acquisition

In most studies the measurement of rates of pro-
tein synthesis is based on the use of radiolabeled
precursors [16,17]. The late embryonic develop-
ment between days 11 (E11) and 19 (E19) as well
as the post hatching day 1 (P1) were studied. For
the study of epigenetic effect of manipulation of
noradrenergic system, clonidine (alpha 2 agonist;
catapressan) was administrated (100 ng/kg) in the
air sac of the egg every second day at embryonic
days E4, E6, E8, E10, E12, E14, E16, E18. Control
animals were injected with saline. Protein synthe-
sis activity was studied 36 h after the last clonidine
application. Our study determines the relative in-
corporation of radioactivity, since the specific ac-
tivity of the precursor amino acid pool [17] is not
known for avian species.

Each subject received an intraperitoneal injec-
tion of l-[1-14C] leucine (56�Ci/mmol; Amersham)
at a dose of 100�Ci/kg in sterile saline. At the
end of 60min experimental time the brain was
immediately dissected out of the skull, frozen
on dry ice, and stored at −75 ◦C until sectioned
for autoradiographic experiments. All brains were
cut in the coronal plane with a Leica cryostat
at −20 ◦C in 20�m thick sections. Sections were
fixed overnight in 30% formalin, washed under
running water for 2 h, dried, exposed to Amer-
sham 14C-sensitive autoradiographic Hyperfilm,
along with a set of 14C-methylmethacrylate stan-
dards (Amersham), as described in [18]. A se-

ries of adjacent sections was counterstained with
cresyl violet for cytoarchitectonic identification,
using nomenclature based on atlas [19] and the
‘‘Avian Brain Nomenclature Exchange’’ web site
(http://jarvis.neuro.duke.edu/nomen/index.html).
After 3 weeks of exposure, the films were devel-
oped and 57 discrete brain structures were ana-
lyzed with an image analysis system (NIH Image;
http://rsb.info.nih.gov/nih-image/), as described
in [19]. Each structure was outlined and measured
in four to six consecutive sections depending on
its antero-posterior extent. In part (a) of Fig. 4,
the basic components of the followed biomedical
methodology are illustrated.

4.2. Computational methods

4.2.1. Time-series discretization
Discovering sequential relationships in a time se-
quence is important to many application domains.
In data mining applications, and especially in pre-
diction and clustering tasks, it is often necessary
to search within a series collection for time-series
that matches a pre-specified query series. During
the last years a great-deal of work is devoted on
such research aspects [20,21].

Measuring the distance between objects is a
crucial issue in many data retrieval and data min-
ing applications. The typical task is to define a
distance function dist(a,b) (the dual problem is
to define a similarity function), between two se-
quences a and b, which represents how ‘distant’
(‘similar’) they are to each other. A simple start-
ing point would be to measure the distance of
time-series by using a normal distance metric
(e.g., Euclidean). But, for time-series this way of
measuring distance is not appropriate, since the
sequences can have outliers, different scaling fac-
tors, and baselines. As it is noted in [20], reliable
time-series matching and clustering operations
should take in consideration the following func-
tions: (i) ignore small or not-significant parts of
the series; (ii) translate the offset of the series in
order to align them vertically; and (iii) scale the
amplitude of the series so that each of the re-
spective segments lies within an envelope of fixed
width.

The above problems could be tackled by discretis-
ing the series. That is, each value of a time-series
is transformed into a representative nominal one.
In the present work, we follow and adjust the qual-
itative dynamic discretization (QDD) method pre-
sented in [22]. The basic idea underlying the QDD
discretization method is the use of statistical infor-
mation about the preceding values observed from
the series in order to select the discrete value that

http://jarvis.neuro.duke.edu/nomen/index.html
http://rsb.info.nih.gov/nih-image/
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Fig. 1 Illustration of the overall time-series discretization process and the formation of the respective time-series
discretized transforms.

corresponds to a new continuous value from the se-
ries. A new continuous value will be assigned to the
same discrete value as its preceding values if the
continuous value belongs to the same population
(to be decided with a Student’s t-statistic). Other-
wise a static discrete transformation measure will
assign a new discrete value to the continuous one.
The overall time-series discretization process is il-
lustrated in Fig. 1.

4.2.1.1. Constant patterns: coping with ‘insigni-
ficant’ changes. With the QDD method it is
very-difficult to model ‘constant’ time-series, i.e.,
series with values fluctuating in ‘small’ or, insignif-
icant ranges (see Fig. 2). We refined and enhanced
the QDD method by computing a threshold value in
order to decide if the series should be considered
as constant or not (internal rectangle of Fig. 2).
First, for each series TS(X) = {X1, X2, . . . , Xm} its
[0,1]-transform is computed, TS[0—1](X) = {X1,[0—1],
X2,[0—1], . . . , Xm,[0—1]}. This is done by dividing all
the values of the series by the series’ maximum
value so that the values of the series range in the
[0,1] interval. Then, we use the formula below to
compute the threshold value.

Th = max(min(TS[0—1],i)) − S.D.(min(TS[0—1],i)) (1)

In the computation of Th all the input time-series
are considered. So, max(min(TS[0—1],i) is the maxi-
mum of the list of all time-series’ minimum values,
and S.D.(min(TS[0—1],i)) is the standard deviation of
this list. For each time-series a test is applied that
identifies a time-series as ‘constant’ or not. If the
minimum value of the time-series [0—1]-transform
is greater than the computed threshold then the
series is considered as constant, and the discrete
value s (i.e., the user specified number of discrete
values) is assigned to all of its values (‘if’ condi-
tion in Figs. 1 and 2). Otherwise the discretization
process is triggered (the QDD algorithm) where, the
continuous values of the series are assigned to re-
spective nominal values.

4.2.2. Time-series distances
The distance between two time-series, TSa(X) and
TSb(X), of m time-points both, is computed by the
distance between their corresponding discretized
transforms, TSa(V) and TSb(V).

distance(TSa(X),TSb(X))

= distance(TSa(V),TSb(V)) =
∑m

j=1dist(va,j, vb,j)

m
(2)
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Fig. 2 Details of the time-series discretization process focusing on the identification and formation of constant
time-series patterns (internal rectangle).

The ‘dist’ function, in formula 2 above, between
two nominal values, va,j, vb,j, may be computed uti-
lizing different metrics. Below the ‘NOM dist’ met-
ric is given.

NOM dist(va,j, vb,j) =
[
1 if va,j �= vb,j

0 otherwise

]

The current GTC implementation incorporates a
variety of other time-series distance computation
approaches (refer also to Section 5). Among others
the value difference metric (VDM) is utilized and
implemented.

4.2.2.1. The VDM distance: a knowledgeable met-
ric. VDM combines information about the input
objects that originates from different modalities.
For example, the a priori assignment of brain nu-
clei to specific class-type values (see Table 1) could
be utilized. The VDM distance metric, given by for-
mula 3 below, takes into account this information
[23].

VDMa(Va = x, Va = y) =
C∑

c=1

∣∣∣∣Na,x,c

Na,x
− Na,y,c

Na,y

∣∣∣∣
2

(3)

where Va = x: x is the value of feature a; Na,x the
number of objects with value x for feature a; Na,x,c
the number of class c objects with value x for fea-
ture a; and C is the total number of classes.

Using VDM we may conclude into a distance ar-
rangement of the objects that differs from the one

that results when the used distance-metric does not
utilize objects’ class information. So, the final hier-
archical clustering outcome will confront not only
to the distance between the feature-based descrip-
tion of the objects but to their class resemblance
as well. As the assignment of classes to objects re-
flect to some form of established domain knowl-
edge the whole clustering operation becomes more
‘knowledgeable’.

4.2.3. Graph theoretic clustering
Having on our disposal two different sources of
information (a) the feature-based description of
the objects, and (b) the knowledge depended dis-
tances between them; the question is how we
utilize both sources of information in order to form
a reliable clustering of the objects. Towards this
target, we elaborate on an innovative graph theo-
retic clustering approach realized by the following
procedures.

(a) Minimum spanning tree construction: Given
a set E of n objects, the minimum spanning
tree of the fully-connected weighted graph of
the objects is constructed; the formed MST
contains exactly n − 1 edges. In the current
GTC implementation we use Prims’ method
for the construction of the MST [24]. A basic
characteristic of the MST is that it reserves the
shortest distances between the objects. This
guarantees that objects lying in ‘close areas’
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of the tree exhibit low distances. So, finding
the ‘right’ cuts of the tree could result in a
reliable grouping of the objects.

(b) Iterative MST partition: It is implemented
within the following three steps.
Step 1: Binary splitting. At each node (i.e.,

sub-cluster) in the so-far formed hier-
archical tree, each of the edges in the
corresponding node’s sub-MST is cut.
With each cut a binary split of the ob-
jects is formed. If the current node in-
cludes n objects then n − 1 such splits
are formed. The two sub-clusters,
formed by the binary split, plus the
clusters formed so far (excluding the
current node) compose a potential
partition.

Step 2: Best split. The category utility (CU)
(by formula 4, exemplified into the
sequel) of all formed n − 1 potential
partitions are computed. The one that
exhibits the highest CU is selected as
the best partition of the objects in the
current node.

Step 3: Iteration and termination criterion.
Following a depth-first tree-growing
process, steps 1 and 2 are iteratively
performed. The category utility of

Fig. 3 The minimum spanning tree (MST) and the resulted clusters for the neurophysiologic CTRL experiment (see
Section 5). The final set of clusters was induced applying the following GTC parameterization: three discretization
intervals; 99% statistical significance threshold; and at least 14% of the total number of objects in each cluster. Dotted
lines indicated clusters’ separation; bolded ovals indicate high-level clusters of the clustering-tree (i.e., clusters ‘E’,
‘ML’, and ‘C’); and ovals indicate the respective sub-clusters (i.e., the final low-levels of the clustering-tree).

the ‘current’ best partition, CUcurrent,
is tested against the ‘so-far’ formed
clusters, CUso far. If CUcurrent > CUso far
then, the node is split (Step 1), other-
wise we stop further expansion of the
current clustering-tree node.

The final outcome is a hierarchical clustering
tree where (by default) the termination nodes
are the final clusters. After visual inspection of
the hierarchical tree the user may decide to
use higher levels of the tree as the final clus-
ters. Note that there is no need to determine
the number of clusters in advance–—a task left
to the node growing/termination criterion (Step
3). As an example of the GTC output, in Fig. 3
we show the MST and the clusters that were in-
duced for the brain development time-series data
(see Section 6). The tree was plotted with the aid
of the GraphViz/dot graph-visualization software
(http://www.graphviz.org/).

For the computation and estimation of the utility
that each set of clusters exhibits we rely on the es-
tablished and well-known category utility formula
[25]. The CU metric resembles an information the-
oretic one, and it is based on the distribution of
the objects’ feature-values in a set of object groups
{G1, G2, . . . , Gg}.

http://www.graphviz.org/
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CU(G1, G2, . . . , Gg) =
∑g

k=1p(Gk)
[(∑

i
∑

j p(Ai = Vij/Gk)
2
)

−
(∑

i
∑

j p(Ai = Vij)2
)]

g
(4)

where

p(Gk) = number of objects in Gk

number of total objects

p(Ai = Vij/Gk) = number of objects in Gk with value Vij for feature Ai

number of objects in Gk

and

p(Ai = Vij) = number of objects with value Vij for feature Ai

number of total objects

4.2.4. Assessing the utility of background
knowledge
As it was already mentioned, a unique GTC fea-
ture is the ability to utilize domain background
knowledge and guide the clustering process in a
‘knowledgeable’ way. With this feature it is possi-
ble to test the ‘fitness’ of the utilized background
knowledge to the discovered clusters. In other
words, we may access the degree to which the ex-
perimental data parallels, i.e., confirms or, rejects
specific domain theories.

We assume that the utilized background knowl-
edge comes in the form of class pre-assignment to
the input objects–—just like the class-types to which
the targeted brain-nuclei belong (refer to Table 1).
To do this, we introduce the Impurity Index metric,
given by formula 5, below:

IIC =
∑

c∈C IIC,c∣∣C∣∣ (5)

The impurity index, IIC, is based on the well
known ‘diversity index’ formula [26] and it mea-
sures the descriptive power of a cluster with re-
spect to the classes assigned to the input objects.
In other words, it helps to give answers to ques-
tions like: ‘‘how probable is to find mostly objects
of a specific class-type in a specific cluster’’.

The impurity index of a class-type C, IIC, is com-
puted as the average over all the impurity-indices of
the class-type’s values c, IIC,c (|C| is the cardinality
of class-type C). The impurity-index of a class-type
value is given by the following entropic formula:

IIC,c = −
∑
k

p(C = c|k)log(p(C = c|k)) (6)

where k ranges over all the induced clusters, and
p(C = c|k) the conditional probability of class-type
value c given cluster k, i.e., the distribution of
class-type value c in cluster k.

5. System description

The current GTC version is implemented in SWI Pro-
log (http://www.swi-prolog.org). The implemen-
tation provides a batch of distance-computation
metrics such as: the normal and square-rooted
‘Euclidean’ metrics; the ‘Pearson’ linear- and
rank-correlation metrics; the ‘Edit’ distance met-
ric, the ‘NOM’ distance (refer to Section 4.2.2),
and the VDM metric.

Moreover, some extra features are implemented
that let the user: (i) to select and focus the clus-
tering analysis on ‘parts’ (i.e., periods) of the in-
put time-series; (ii) to specify the statistical signifi-
cance level being used in the time-series discretiza-
tion procedure; (iii) to import a distances-file and
not to compute distances from the feature-based
description of the input objects; and (iv) to specify
the percentage minimum number of objects (rela-
tive to the total number of input objects) that each
sub-cluster is required to include–—a quite useful
feature that controls the generalization level of the
clustering-tree.

In part (b) of Fig. 4 we illustrate the basic steps
and components for the followed computational
methodology.

5.1. Time complexity

The core of GTC (i.e., the MST iterative partition-
ing) time-complexity depends: (i) on the complex-
ity of computing the category utility indices, and
(ii) on the depth of the resulted clustering tree. De-
note with F, the number of features; V, the mean
number of values per feature and n, the total num-
ber of input objects. The category utility computa-
tion needs a time linear to the total number of the
features’ values, ∼O(F × V).

In the worst case the maximum depth of the tree
is n − 1. That is, at the zero level (i.e., all ob-

http://www.swi-prolog.org
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Fig. 4 (a) Biomedical methodology–—brain developmental data acquisition and time-series data presentation, (b)
computational methodology: discretization of time-series (the user enters the number of time-series intervals and
respective values as well as the statistical-significance level for transforming a numeric time-series value to its
corresponding nominal value); computation of distances between time-series (based on the availability of background
knowledge the user specifies the respective input file); the core of the GTC algorithm where, the computed MST
is computed and iteratively partitioned to construct the final clustering tree. The resulted clustering tree may be
inspected by the user and the final clusters are selected.

jects in one group) the resulted sub-clusters have
1 and n − 1 objects, respectively. The sub-clusters
are formed after performing a total of n − 1 CU
computations (i.e., edge-cuts or, splits of the cor-
responding MST tree). At the second level the clus-
ter with the n − 1 objects is partitioned into two
sub-clusters with 1 and n − 2 objects, respectively,
after performing a total of n − 2 CU computations.
At the last level, n − 1, there are n − (n − 2) ob-
jects, and a total of n − (n − 2) − 1 = 1 CU compu-
tations are to be performed. So, the total number
of CU computations is equal to 1 + 2 + · · · + (n − 1)
= n(n − 1)/2. As a result, and for the worst case,
the GTC algorithm exhibits a quadratic to the total
number of input objects, and linear to the number
of features and the mean number of feature values,
time-complexity, i.e., ∼O(n2 × F × V).

The quadratic complexity figure is in accor-
dance to hierarchical clustering approaches that
use dynamic closest pairing techniques [27], and
with k-means approaches when the preset num-
ber of clusters is equal to the total number of
input objects. In all the conducted experiments,
and for datasets with ∼1000—5000 objects and

∼10—20 features, the real execution time of the
Prolog-based GTC implementation ranges from ∼2
to ∼30min (on a 1.7MHz, 0.5G RAM PC).

6. Status report and lessons learned

The application of GTC on the CTRL dataset, using
the NOM dist, concludes to a set of five clusters.
The same number of clusters was retained for the
CLON dataset. In Fig. 3, we illustrate the MST orga-
nization of these clusters, both in high-levels–—the
three super-clusters ‘E’: for the Early develop-
ment pattern; ‘ML’: for the Mid-Late develop-
ment pattern; and ‘C’: for the Constant pattern,
and in low-levels of the clustering-tree–—the five
sub-clusters; ‘EARLY’ and ‘EARLY MID’ develop-
mental sub-patterns of the ‘E’ indicative cluster
pattern; ‘MID LATE’ and ‘LATE’ developmental
sub-patterns of the ‘ML’ indicative cluster pattern;
and ‘CONSTANT’ developmental pattern being
identical to the ‘C’ indicative cluster pattern.

The mean protein-syntheses over all the brain
nuclei assigned into a cluster, i.e., the cluster’s
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centroid is used as the indicative (or representa-
tive) pattern of each cluster. Note that the means
are computed over the [0—1]-transforms of the
corresponding time-series. In Fig. 5, the plots of
the clusters’ representative patterns (for both
CTRL and CLON experiments) are shown, accom-
panied with their respective colored-patterns. The
colored patterns were derived with the aid of the
GEPAS Web-services (http://gepas.bioinfo.cnio.
es/cgi-bin/cluster), and after the corresponding
‘newick trees’ were generated with the aid of the
treeview program (http://taxonomy.zoology.gla.ac.
uk/rod/treeview.html).

6.1. Biological interpretation

The presented clustering analysis was used to
identify the biochemical changes underlying the
morphogenetic events in late embryonic develop-
ment. Based on the regional differences in protein
synthesis activity, the identified five histogenetic
cluster-representative patterns led to the mature
anatomically defined nuclei.

The ‘CONSTANT’ cluster included brain areas
already formed (i.e., matured) brain regions (PS
activity similar to post-hatching stages). Basically,
these areas are not affected by the later ontoge-
netic events taking place at the studied stages.
It is interesting that these regions are distributed
though out longitudinal as well as the transverse
brain axis.

The other clusters were characterized by altered
protein synthesis rates (altered gene expression)
that may represent altered function of the gray
matter structure. Previous in vivo and in vitro
studies showed that PS and nucleic acid synthesis
decrease in mammalian brain during development
[28]. This pattern is characteristic of ‘EARLY’ and
‘EARLY MID’ clusters and represents about half of
the brain regions studied, suggesting naturally oc-
curring cell death, cell migration, and elimination
of synapses.

In addition, ‘MID LATE’ and ‘LATE’ patterns were
identified, both showing an increase in PS during
development, possibly reflecting addition of cells
and specific qualitative changes in PS. For exam-
ple, the production of proteins that appears to
relate with late events of brain development, such
as, synthesis of the myelin associated protein. The
pattern of ‘LATE’ maturation characterized white
matter structures, through out the antero-posterior
axis that showed a delayed increase of protein
synthesis in parallel with the late myelination and
appearance of myelin proteins during development
of the avian brain [29]. Moreover, patterning PS
activity in immature cerebellum layers parallels

known events in avian cerebellar development
[8].

6.1.1. CTRL versus CLON
In order to assess the ways that clonidine affects
the brain development process we identified the
brain nuclei that change their cluster assignment
between the corresponding GTC runs (i.e., CLON
versus CTRL), and significantly change their de-
velopmental profile. Clonidine induced complex
changes in nuclei located through out the brain
axes: CDL, GCT, GLv, LoC, and nDBC change their
profile from ‘E’ to ‘C’; CPi, Hip, POM, SGFSd,
and TOv nuclei form ‘C’ to ‘E’, and FPLp and PL
nuclei from ‘C’ to ‘ML’. Brain regions affected,
contain significant levels of the �2 adrenoceptor,
in which clonidine acts as an agonist [8,30]. In
most cases, stimulation of �2 receptor subtype
by clonidine application at different embryonic
stages, delayed maturation of specific brain ar-
eas in several anatomical domains. This finding is
in agreement with the pluri-segmental origin of
the catecholaminergic system in the forebrain and
midbrain [31], and the role of �2 adrenoceptors in
synapse formation and plasticity mechanisms [7].

A fundamental question, of great interest in
brain development studies, is the potential of a
‘hidden’ program that guides the developmental
process from which organized functional circuits
emerge. A promising approach would be to ex-
amine the relation between the brain nuclei de-
velopmental profiles and various class-type values
assigned to the nuclei. The targeted class-types
and their values are (see Table 1): ‘major anatomic
divisions’ (MAD): refers to major compartments
of the brain–—eight such divisions (values) are tar-
geted that can be considered modular because they
represent largely independent histogenetic units
of neural tissue (pallium, subpallium, hypothala-
mus, thalamus, cerebellum, tectum, tegmentum,
and pons) [32]; ‘A2 synaptic transmission’ (A2ST):
refers to the concentration-level of specific alpha
2 subtype of adrenoreceptors in the respective
brain-nuclei [8]–—three levels were identified (low,
medium, and high); ‘brain system’ (BS): refers to
the brain functional system organization including
six such divisions (limbic, somatosensory, visual,
motor, multimodal, and white-matter); and ‘cere-
bral axes topography’ (CAT): refers to the loca-
tion of the area in respect to the dorso-ventral
or medio-lateral axis of the brain–—four such lo-
cations are identified (dorsal, ventral, lateral,
and medial). The results are summarized in
Table 2.

The analysis on the MAD class-type did not sup-
port the idea that forebrain divisions–—telence-

http://gepas.bioinfo.cnio.es/cgi-bin/cluster
http://gepas.bioinfo.cnio.es/cgi-bin/cluster
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
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Fig. 5 The colored protein-synthesis profiles of the targeted brain nuclei, accompanied with the plots of the
respective cluster’s centroid; (a) for CTRL, and (b) for CLON experiments. Symbolic names were assigned based on the
trend of the respective pattern–—cluster E: with two sub-clusters identified, EARLY–—high activity at early (E11, E13)
stages (shaded area), followed by sharp decline during development and EARLY MID–—high activity at early-to-mid
(E11—E17) stages gradually declining at later stages; cluster ML: with two sub-clusters identified, MID LATE–—low
activity at the early, increasing at mid-to-late stages (from E13 to E19), and LATE–—low activity in early-to-mid stages
with highest activity at hatching (P1); and cluster C: a continuous constant developmental (high) activity over all the
stamped time-points (from E11 to P1). The five clusters (‘EARLY’, ‘EARLY MID’, ‘MID LATE’, ‘LATE’, and ‘CONSTANT’)
are retained between the two experiments. ‘E’ stands for the merged ‘EARLY’ and ‘EARLY MID’ sub-clusters, and ‘ML’
for the merged ‘MID LATE’ and ‘LATE’ sub-clusters.
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Table 2 Distribution of brain regional class-type val-
ues in the induced clusters

CTRL CLON Total

C E ML C E ML

Major Anatomic Divisions (MAD)
pallium 3 6 2 3 7 1 11
subpallium 2 3 1 3 3 0 6
thalamus 0 5 1 1 4 1 6
hypothalamus 1 2 0 0 3 0 3
tectum 3 2 2 4 2 1 7
tegmentum 1 0 5 1 0 5 6
pons 4 2 4 4 0 6 10
cerebellum 0 1 2 0 1 2 3

A2 Synaptic Transmission (A2ST)
low 8 7 11 4 9 13 26
medium 5 4 7 7 3 6 16
high 3 10 2 5 9 1 15

Brain System (BS)
auditory/vocal 1 2 2 3 1 1 5
visual 4 3 4 4 4 3 11
somatosensory 3 2 3 2 2 4 8
multimodal 0 4 0 1 3 0 4
limbic 2 8 1 1 9 1 11
motor 4 2 5 5 1 5 11
white-matter 2 0 5 0 1 6 7

Cerebral Axes Topography (CAT)
dorsal 2 4 8 5 2 7 14
ventral 6 2 7 4 3 8 15
medial 2 10 1 4 9 0 13
lateral 6 5 4 3 7 5 15

Figures in bold indicate significant presence of areas
(>50% of the total areas within the class-type) in ‘C’
(Constant), ‘E’ (Early) and ‘ML’ (Mid-Late) clusters.

phalon (pallium, subpallium) and diencephalon
(thalamus, hypothalamus), develop later than the
hindbrain divisions (pons, cerebellum). In fact an
earlier histogenetic trend was determined in spe-
cific forebrain divisions (thalamus, pallium) com-
pared to posterior located areas of hindbrain. How-
ever, our analysis is in accordance with the notion
that, hindbrain nuclei in pons are pluri-segmental
(originate from multiple embryonic divisions; for
refs see [32], since they did not follow a specific
ontogenetic pattern, and were distributed in all
clusters.

Moreover, thalamic and pallial areas are grouped
in the same discovered indicative developmental
pattern of ‘EARLY’ histogenesis, supporting the sig-
nificance of their reciprocal connections and the
functional role of positional information in brain
pattern formation. Subpallium derived structures
follow diverse ontogenetic trends, providing an ad-
ditional indication of their different modality, as

suggested by their molecular/structural subdivision
[33].

Furthermore, we questioned the possible cor-
relation of the time course embryonic patterning
with the hierarchical levels of brain nuclei (i.e.,
the BS class-type). Specific types of sensory in-
formation are analyzed in parallel by different
functional systems (optic, acoustic, somatosen-
sory); integration of many sensory modalities is
performed by multi-modal association areas, while
motor programs are generated by motor-related
areas (e.g., subpallium; basal ganglia). Such brain
systems represent functional neural units, process-
ing specific information, composed by distantly
located regions, derived from several embryonic
divisions (plurisegmental) with molecular speci-
ficity. It has been suggested that embryonic modu-
larity is transformed into functional modularity, in
part by translating positional information [32]. We
questioned the coincidence in the developmental
PS pattern of differentially originated areas (dif-
ferent anatomic modality) that are functionally
related (same functional modality), by grouping
areas according to their involvement in specific
neural circuits (BS, Table 2), but no specific pattern
was followed among areas of the same functional
modality. However, our analysis suggests a char-
acteristic earlier maturation of multi-modal and
limbic areas compared to those related to specific
sensory or motor systems, as proposed by quantita-
tive neuroanatomic studies in monkey cortex [34].

In addition to the division of brain along the
longitudinal axis (i.e., MAD; pallium; anterior
→ cerebellum posterior), we grouped areas
along the transverse (dorsal—ventral) and sagital
(medial—lateral) axes (i.e., CAT class-types). This
division clearly showed an advanced formation of
medially located structures as expected due to their
closer position to medial ventricular proliferation
zones were cells are produced before migrating to
their final position to form brain nuclei [11,35].

6.2. Exploiting neurobiological knowledge

Qualitative assessment of the clustering results,
based on the impurity index formula (presented in
Section 4.2.4), was performed in addition to the
presented quantitative analysis. Specifically, we
questioned whether: ‘‘A2ST level of brain-nuclei
could predict its type of developmental profile?’’.

In Table 3, we present the impurity indices of
the various class-types for different GTC runs:
NOM run–—the NOM dist is employed, with no ref-
erence to brain nuclei classification; VDM/MAD
run–—the VDM distance (formula 3, Section 4.2.2)
is utilized with brain nuclei assigned to brain ‘ma-
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Table 3 Impurity Indices. Bold figures indicate su-
periority with respect to the reference GTC run that
utilizes the ‘NOM’ distance (i.e., no classification in-
formation is utilized; first column)

NOM VDM/
MAD

VDM/
A2ST

VDM/
BS

VDM/
CAT

MAD 0.13 0.18 0.22 0.22 0.19
A2ST 0.25 0.21 0.37 0.29 0.24
BS 0.19 0.18 0.32 0.26 0.21
CAT 0.22 0.20 0.30 0.26 0.23

Figures in bold indicate superiority over all runs.

jor anatomic divisions’ class-types; VDM/A2ST
run–—the same with brain nuclei assigned to ‘A2
synaptic transmission’ class-types; VDM/BS–—the
same, with brain nuclei assigned to ‘brain system’
class-types; and VDM/CAT–—the same, with brain-
nuclei assigned to ‘Cerebral Axes Topography’
class-types.

The VDM/A2ST run produces superior impurity in-
dex figures with respect to all other runs (figures
in bold in Table 3). The result of this analysis sug-
gests a relation between protein-synthesis activity
and the concentration-level of �2 adrenoreceptors
in the targeted brain-nuclei.

7. Conclusions and future plans

The primary objective of the presented study was
the discovery of indicative and characteristic pat-
terns in the developing brain. To this end, we in-
troduced a novel graph-theoretic clustering (GTC)
methodology adjusted for sequential events such
as those occurring in the course of brain develop-
mental.

The methodology relies on a careful discretiza-
tion of time-series values. A weighted-graph struc-
ture is utilized in order to geometrically arrange
the discretised time-series, and the respective
minimum spanning-tree of the graph is formed.
In the core of GTC is the iterative partitioning of
the formed MST using a well-founded information-
theoretic metric (category utility), which decides
on the MST-edge to split, as well as, when to ter-
minate partitioning. The final outcome is a hierar-
chical clustering organization of the input objects.

With GTC clustering we were able to uncover crit-
ical relations between targeted brain areas, and
identify critical brain developmental events. Espe-
cially, the hierarchical clustering organization of
the brain-nuclei revealed a more refined distinction
between the discovered indicative brain develop-
mental patterns.

In addition, hybridization between available
neurobiological knowledge (i.e., the assignment
of brain-nuclei to various brain divisions and rela-
tive class-types), and feature-based description of
targeted brain-nuclei (i.e., the brain development
PS profiles) unhide valuable information on his-
togenetic relationships between distantly located
areas. Moreover, it reveals important evidence for
‘area specific’ modeling of the developing brain and
confirms the fundamental role of �2 adrenocep-
tors, providing the basis for further developmental
studies.

This GTC methodological approach is currently
being tested on other domains (e.g., economic
time-series data), in order to explore the suitability
of the proposed methodology in other domains. In
addition, further experimentation with domains of
huge volumes of data would provide important as-
sessment of its scalability–—in this context we have
performed studies with real-world gene expression
profiling datasets with encouraging preliminary re-
sults [36], Furthermore, we plan to improve and
port GTC in Java, establish respective Web-based
clustering services, and incorporate more sophisti-
cated distance computation processes specifically
suitable for time-series objects (e.g., dynamic time
warping).
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